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Several methods exist to measure the group delay of a fiber Bragg grating. Here, we compare two such methods,
namely the Hilbert transform (HT) of the device transmission spectrum and standard Fourier spectral interferom-
etry. Numerical simulations demonstrate that both methods work not only for ideal, lossless devices but also for
ones with realistic absorption. Experimental measurements show that the HT is more straightforward to imple-
ment and is significantly less susceptible to phase noise, which can significantly reduce the standard deviation
between measurements. © 2014 Optical Society of America
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1. INTRODUCTION
The complete optical characterization of fiber Bragg gratings
(FBGs) is necessary as a large variety of device designs are
used for applications in diverse fields, ranging from dispersion
compensators [1,2] and filters [3] in optical telecommunica-
tions, to temperature and strain sensors [4,5] throughout
industry. This characterization comprises the amplitude
response, which describes the transmission and reflection
characteristics of the system, as well as the phase response,
which describes its group delay. The group delay of a device is
the time required for the amplitude envelope’s peak to propa-
gate along its length. This is most easily conceptualized as the
time required for a pulse of light to travel through the system,
but can also be applied to continuous wave inputs. Knowing
the group delay of an FBG is very important, as it affects many
phenomena, such as pulse propagation in signal processing
and enhanced light–matter interactions in sensors and
nonlinear optical components [6–8].

Several approaches for measuring the group delay of an
FBG exist, and they can be split into two distinct categories:
direct and indirect methods. Direct methods are time-domain
based and include a measurement of the delay incurred by an
optical pulse transmitted through the FBG [9,10]. However,
these methods are generally limited by the time resolution
of the measurement equipment and the challenge of matching
the probe pulse and device bandwidths. The more commonly
used indirect, frequency-domain-based methods extract the
phase response of the device as a function of input frequency,
ϕ�ω�, using mathematical transforms. This phase ϕ�ω� is then
used to calculate the group delay according to

τg�ω� � −

dϕ�ω�
dω

: (1)

A well-known example of such an indirect method is
Fourier transform spectral interferometry (FTSI), where the
phase information is extracted from an interferometric meas-
urement [11,12]. Although functional, we will show in this
work that it can be highly susceptible to phase noise, adding
uncertainty to the final group delay values. Alternatively, we
can use Hilbert transforms (HTs) [13,14] to extract the phase
of an optical spectrum. However the HT can only be applied to
causal functions. Furthermore, as we will discuss later, it can
only be used to correctly extract the phase information if the
input spectrum is phase minimum [15].

The reflection spectrum of a realistic FBG is generally not a
minimum phase function, and so extra care and interferomet-
ric setups are necessary to meet this condition [16–18].
However, the transfer function of an FBG in transmission
is always minimum phase, and therefore all necessary condi-
tions are met [19]. Consequently, we are able to extract the
phase information directly from a transmission spectrum,
without the need for an interferometric setup, greatly simpli-
fying experimental procedures. Previous numerical work has
shown that the HTmethod works for the case of lossless FBGs
[19]. Furthermore, experimental work has shown that it works
for photonic crystals in the radio frequency regime [20].

In this work, we compare the HT and FTSI methods for
measuring group delays in realistic FBGs in a transmission
geometry. First, we present a summary of the underlying
mathematical analysis, showing how both methods extract
the phase information from their respective optical measure-
ments, followed by a discussion of their similarities and
differences. In the final sections, we compare the accuracy
of the HT and FTSI methods, both numerically and experimen-
tally. For these comparisons, we use a rectified Gaussian FBG,
which consists of a constant Bragg period with a Gaussian
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distribution of the refractive index modulation along the
optical axis [21,22], which results in narrow bandwidth reso-
nances with a large range of group delays. The photonic
bandgap widens as the index modulation gets larger, and
the center wavelength of the local bandgap shifts in response
to the local mean refractive index change (inset of Fig. 1). The
aforementioned narrow bandwidth resonant modes are
confined between spatial bandgap regions on the short wave-
length side of the bandgap. The measured transmittance and
reflectance spectra, taken with a narrow linewidth continuous
wave source swept through the spectral region of interest with
0.1 pm resolution, of such a Gaussian FBG are shown in Fig. 1,
where some of the resonant peaks have bandwidths narrower
than 1 pm. Rectified Gaussian FBGs have the potential to be
used as sophisticated sensors due to the resonant features’
large group delays and narrow bandwidths [5] or devices
capable of significant nonlinear optical responses due to
the large field intensity enhancements in the resonant modes
[23]. However, the challenge of accurately measuring large
group delay values at a sufficiently fine spectral resolution
is significant.

2. THEORY
As they are indirect group delay measurements, both the HT
and FTSI methods extract the phase information from a
frequency-based input. The input for the HT is a simple
transmission spectrum, while FTSI needs an interference
spectrum. In both cases the group delay τg�ω� is then found
using Eq. (1).

A. Hilbert Transform
The HT, ℋ, can be used to relate the imaginary and real parts
of a linear function G�ω�, provided it is causal in the time
domain; i.e., g�t� � 0 for t < 0, where g�t� is the inverse
Fourier transform of G�ω�. The HT is given by

ℋ�I�G�ω0��� �
1
π

Z �∞

−∞

I�G�ω��
ω − ω0

dω � R�G�ω0��; (2)

where I�G�ω�� andR�G�ω�� are the imaginary and real parts of
the linear function G�ω�, respectively, and we evaluate the
Cauchy principal value of the integral to account for the pole
at ω � ω0. The inverse HT is defined as ℋ−1 � −ℋ. Familiar
examples of a HT are the Kramers–Kronig relations, which are

valid only if G�ω� is Hermitian, i.e., the real part is even while
the imaginary part is odd. For the purpose of this work we use
the more general HT as defined above.

Upon inspection of Eq. (2) we note that the integral is the
convolution of I�G�ω�� and 1∕πω. Hence we can write an
equivalent definition of the HT using Fourier transforms

ℋ�I�G�ω��� � −F−1�i sgn�t� · F �I�G�ω����; (3)

where sgn�t�, F , and F−1 are the signum function, Fourier
transform, and inverse Fourier transform, respectively. This
definition is better suited for numerical implementations as
it removes the pole present in Eq. (2). Furthermore, we
can make use of fast Fourier transforms, which significantly
reduces computation time.

As clearly shown in the definition of the HT [Eq. (2)], it links
the real and imaginary parts of a function. Therefore, in order
to extract the phase information of an optical system using
the HT, it is necessary to find a function that separates the
amplitude and phase information into its real and imaginary
parts. We recall that the transmission coefficient t�ω� of an
optical system is defined as

t�ω� �
�����������
T�ω�

p
eiϕ�ω�; (4)

where T�ω� is the transmittance. We invoke the natural log-
arithm to separate the real and imaginary parts of t�ω�:

ln t�ω� � ln T�ω�
2

� iϕ�ω�: (5)

We can now apply the HT to ln�T�ω��, yielding the phase
ϕ�ω�. As stated earlier, the HT can only be applied if
the function is causal, and therefore we require ln�T�ω�� to
be causal. This is the case if t�ω� is a minimum phase function
[15], conditions that are always satisfied by the transmission
through a FBG [19].

One further modification to the HT is necessary in order to
implement this method experimentally. The integral in Eq. (2)
ranges from −∞ to ∞; however, we cannot practically know
T�ω� for all frequencies. We therefore approximate the HT by
covering a sufficient bandwidth. The chosen bandwidth can
be considered sufficient if the start and end points are far
enough away from any optical bandgap, such that the optical
delay at these points is locally frequency independent and can
be approximated as the delay incurred while traveling through
a piece of fiber with a length equal to the FBG. The final
relation between the phase and amplitude information can
therefore be expressed as

ϕ�ω0� � −

1
2π

Z
ω2

ω1

ln�T�ω��
ω − ω0

dω − ω1τ1; (6)

where ω1 and ω2 correspond to the start and end frequencies
of the spectrum shown in Fig. 1 and τ1 corresponds to the
delay incurred at ω1.

B. Fourier Transform Spectral Interferometry
As the name suggests, the FTSI method is an analysis method
for interferometric data [11]. In this discussion we will use the
example of a Mach–Zehnder interferometer, as shown in

Fig. 1. Experimental transmittance (dashed red) and reflectance
(solid blue) curves of a rectified Gaussian FBG. The narrow peaks
are the result of a resonant cavity inside the photonic bandgap. Inset:
bandgap diagram of the same device along the fiber axis. The shaded
area represents the bandgap, where propagation of light is forbidden.
At short wavelengths, the propagating region is bounded by two
forbidden regions, thus creating a cavity where light resonates.
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Fig. 2, although the method can be applied to other interfer-
ometer designs. It is important to notice that for a simplified
analysis the reference arm should be slightly shorter than the
sample arm, where the time delay associated with the total
length difference between the two arms at frequencies far
from the bandgap is described by τF .

Upon recombination, the light from the two arms interferes,
resulting in the intensity spectrum

I�ω� � S�ω� � R�ω� � 2
���������������������
S�ω�R�ω�

p
cos�ϕ�ω� − ωτF �: (7)

Here S�ω� and R�ω� are the sample and reference arm trans-
mittances, respectively, ωτF is the phase delay due to the dif-
ference in optical arm length, and ϕ�ω� is the sample induced
phase difference. The interference term of Eq. (7) (the third
term) can be isolated by either measuring it directly using a
balanced photodetector or measuring S�ω� and R�ω� sepa-
rately and then subtracting them from I�ω�. We take the
Fourier transform of this isolated interference signal and
get three peaks: a DC component at t � 0 and two at
t � �τF , characterizing the interference term. We then isolate
one of the interference peaks at t � �τF with a window
function and take the inverse Fourier transform. This results
in the phase term according to

ϕ�ω� � arg�F−1�W�t� · F �I�ω���� � ωτF ; (8)

where W�t� is a window function over one of the interference
peaks at t � �τF .

C. Similarities and Differences
Both methods extract the phase information, and Eq. (1) is
then used to obtain the group delay, resulting in two very sim-
ilar mathematical forms: for the FTSI method,

τg�ω� � −

d

dω
farg�F−1�W�t� · F �I�ω����g − τF � τ1; (9)

and for the HT method,

τg�ω� � −

d

dω

�
F−1

�
i sgn�t� · F

�
ln�T�ω��

2

���
� τ1; (10)

where T�ω� from the HT is equivalent to S�ω� from the FTSI
analysis above. However, while there are mathematical simi-
larities between these two methods, there are significant
differences that need to be considered. Mathematically, the
FTSI is a method to extract part of a function, while the
HT relates different parts of a function to each other. Conse-
quently, the HT needs an additional condition, causality,

which in our case translates to the minimum phase condition
for t�ω�. However, as stated before, these conditions are al-
ways met for the transmission spectrum of a FBG. The major
difference between the two methods lies in the experimental
implementations necessary to collect the input spectra. The
FTSI method requires an interference setup, while the HT
can use a simple transmission spectrum. In the next sections
we will investigate the effect of this difference on the accuracy
of the two methods.

3. NUMERICAL RESULTS
Here we compare the accuracy of the two methods numeri-
cally, representing the case of an “ideal”, i.e., noise-free, ex-
periment. To do this, we simulate the propagation of light
through a rectified Gaussian FBG over the wavelength range
of interest using a transfer matrix method, yielding its trans-
mission and phase spectra. By applying Eq. (1) to this phase,
we find the true value of the group delay. We then use the
transmission spectrum to get the HT derived group delay,
and an interference spectrum (created by numerically inter-
fering the transmission with a reference signal) to get the FTSI
derived group delay. Therefore we end up with three group
delay spectra: one true spectrum and one for each of the
different measurement methods. Figure 3 compares both
methods to the true group delay values for a lossless device.
The transmission peaks narrow in bandwidth as they pen-
etrate deeper in the bandgap (shown in Fig. 1). Consequently,
these resonant modes will have proportionally larger group
delays [5]. The group delay peaks are accurately recovered
by both methods, within the limitation of resolution of the
peaks. The discrepancy of the curves in the gaps between
the resonant peaks can be described as follows: the transfer
matrix method can output accurate phase information even
when transmitting negligible power, thus producing constant
values between the peaks. Conversely, the FTSI and HT
methods, which depend on nonzero amplitude information,
contend with numerical noise from the simulations’ approxi-
mation of zero. Therefore, both methods can be set to accu-
rately determine group delay provided some transmission
signal exists. Figure 4 repeats the simulation with linear
absorption losses uniformly applied along the length of the
FBG in order to approximate the losses incurred in realistic
devices [23,24]. While losses reduces the group delay value of
each peak, both methods continue to accurately measure
these values.

Fig. 2. Sketch of a Mach–Zehnder interferometer, suitable for the
FTSI method. The optical input is split into two arms, one short refer-
ence arm and a longer arm containing the sample under investigation,
where τF is the time delay associated with the total length difference
between the two arms at frequencies far from the bandgap.

Fig. 3. Numerical group delay spectra for a lossless rectified Gaus-
sian FBG. The different lines are hard to distinguish as the HT and
FTSI derived group delays agree well with the actual group delay.
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4. EXPERIMENTAL RESULTS
For the experimental comparison, we measured the transmis-
sion and interference spectra of the rectified Gaussian FBG
and used both the FTSI and HT methods to derive the group
delay spectra. As with the transmission and reflection spectra
in Fig. 1, all measurements were done with a 100 kHz
linewidth tunable continuous wave laser that was swept over
the spectrum of interest at 0.1 pm resolution. For the trans-
mission spectrum, the transmitted light is measured using a
photodiode. For the interference measurement, we place
the FBG inside a Mach–Zehnder interferometer, as shown
in Fig. 2, and use a balanced photodiode to isolate the inter-
ference signal. These measurements are repeated several
times (20 times for the transmittance and 18 times for the
interference), allowing us to calculate the uncertainty associ-
ated with each method. The resulting group delay spectra
are shown in Fig. 5 (red curve represents HT data, and blue
represents FTSI). There are two striking observations to be
made. First of all, the HT method shows significant noise
between the group delay peaks. In this region, very little or
no light is transmitted and therefore the only signal within
the transmission spectrum is noise, such as dark currents
in the detector, while in the interferometric measurement
we still have a significant signal due to the reference arm.
However, as no light is transmitted through the FBG in this
region, the delay at these wavelengths is of no interest. In-
stead, we should examine the spectra around the delay peaks,
as shown in the insets of Fig. 5. Here the HT method has a
significantly lower uncertainty (solid color area) than the
FTSI method, while the mean delay of the two measurement
(thin lines) approaches remains in good agreement. The
higher uncertainties of the FTSI data are attributed to the in-
terference measurement accumulating phase noise between
the two arms of the interferometer from a variety of factors,
such as temperature variations and external vibrations.
Because the HT requires only the transmission intensity, it
is insensitive to fluctuation in phase.

Since the absolute value of the standard deviation increases
with the group delay of a resonance mode, we normalize it to
the mean group delay value measured for each peak in order
to quantify the uncertainty associated with each method. The
reduced uncertainty of the HT method is clearly apparent in
Fig. 6, which shows the standard deviation of each peak
normalized to the peak height. For the FTSI method, the
uncertainty lies in the range of 25%–185%, while the corre-
sponding values for the HT method do not exceed 10%.

5. CONCLUSION
Using numerical simulations, we showed that both the FTSI
and HT methods are capable of extracting the group delay
of narrow resonance peaks in a realistic FBG (including
absorption losses) with equal accuracy. However, an experi-
mental comparison shows that their susceptibility to sources
of noise is quite different. The interferometric approach is
more susceptible to phase noise being introduced into the

Fig. 4. Same case as Fig. 3, in the presence of absorption losses.
Even with loss, both the HT and FTSI derived group delays still agree
well with the true value.

Fig. 5. Group delay spectra obtained experimentally with FTSI
(blue) and HT (red) methods. The lines represent the average group
delay values, while the shaded regions represent the associated stan-
dard deviation. Top: overview of the whole region of interest. The HT
method has a large uncertainty between the peaks, as there is no
transmission: only random noise, with random phase, is detected.
The FTSI method has less noise in that region because there is still
transmission from the reference arm. However, this is not a concern
since we are only interested in the peak values. Bottom images:
zoomed-in spectra of the group delay peaks. The average values
are in good agreement, and the standard deviation for the HT method
is consistently lower than the FTSI standard deviation, indicating a
cleaner measurement.

Fig. 6. Standard deviation of the group delay peaks, normalized
to the peak height. The FTSI method (blue crosses) has large uncer-
tainties, ranging from 25% to 185%. The HT method’s (red dots)
uncertainties are much better, at most 10% of the peak height.
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sample or reference arms by the environment, such as vibra-
tions or temperature fluctuations. Because the HT method
measures only the transmission data of the device, it is not
affected by phase variations in the signal. Furthermore, with
this method a single measurement using a single source and
detector allows full characterization of the amplitude and
phase response of an FBG. Conversely, the FTSI method
requires an interferometric setup and either a more compli-
cated detection setup (balanced photodiodes) or multiple
measurements (one for each arm separately and then the
interference signal) to isolate the sample response. In our
comparative experiments using the same instrumentation,
the HT method led to a much smaller uncertainty (<10%)
compared to the FTSI method (between 25% and 185%). Both
methods can still be affected by intensity noise (source
fluctuation or detector dark currents), and the magnitude
of the impact of noise on measurements will depend on instru-
mentation and environment, but removing phase noise as a
source of error is a compelling reason to use the HT approach
for group delay characterization of FBGs. While the HT
method can only be used under certain conditions (a causal
ln�t�ω��, which can be ensured by a minimum phase t�ω�),
these conditions are always fulfilled for the transmission
through a FBG. Therefore, we have shown that the HT is
not only a valid method for measuring group delays, but also
offers significant advantages in both accuracy and ease of
measurement when compared to the FTSI method.
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